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Abstract. We examine whether or not two-dimensional quasi-periodic lattices belong to 
the same ‘universality’ class as periodic lattices, and we study bond and site percolation 
in Penrose tiling and its dual lattice by making use of Monte Carlo simulations. For the 
sake of comparison, we also investigate percolation in periodic systems such as a square, 
Kagome and dice lattice. For all these lattices, we evaluate several critical exponents such 
as (I related to the total number o f  clusters, p related to the percolation strength, y related 
to the mean cluster size, Y related to the correlation length, T related to cluster sizes, and 
the fractal dimension D. Our results indicate that universality holds in two-dimensional 
lattices with or without periodicity where the coordination number could be either single- 
valued or multi-valued. 

Most previous studies of percolation have been concerned with periodic lattices with 
single-valued coordination. In particular, it is only for these lattices that the so-called 
‘universality’ has been numerically shown to hold where ‘universality’ indicates that 
critical exponents are dimensional invariants being independent of the details of lattices 
(Stanley 1971, Shante and Kirkpatrick 1971, Essam 1980, Stauffer 1985, Lu and Birman 
1987). Our purpose therefore is to see whether ‘universality’ exists also in lattices 
without periodicity and/or without single-valued coordination. To this end, we calcu- 
late several critical exponents of percolation in two-dimensional ( 2 ~ )  quasi-periodic 
lattices such as Penrose tiling and its dual lattice as well as periodic lattices such as 
square, Kagomk and dice lattices. Let us note that the coordination number z in a 
square, Kagomt and dual lattice of Penrose is single-valued with z = 4 while z is 
multi-valued in Penrose tiling ( z  = 3, 4, 5, 6 and 7)  and in a dice lattice ( z  = 3 and 6) 
with the average Z=4.  

We first carry out Monte Carlo (MC) simulations of percolation as follows 
(Yonezawa et al 1989, Sakamoto et a1 1989). We start with a lattice composed of N 
bonds or sites depending on whether the object is bond or site percolation. Out of 
these N elements-bonds or sites-we choose M elements at random, and assume 
that these M elements are intact while the other elements are broken. The concentration 
p of intact elements is given by p = M / ( M +  N). 

At this point, it is worth mentioning the following point. As for Penrose tiling and 
its dual lattice, we pick up a portion of a given N such that the frequency of each 
vertex is almost equal to that for the corresponding infinite system. When this consider- 
ation is taken, the dependence of the results on a choice of origin becomes practically 
insignificant. 
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A cluster composed of s connected intact elements is named an s-cluster. If there 
exists a cluster which extends from one side of the lattice to the other, say from top 
to bottom or from left to right, this cluster is said to be ‘percolating’. 

For each concentration p of intact elements, we perform n runs of MC simulations 
and count the number m of runs in which there exists a percolating cluster. The ratio 
m / n  is interpreted to be the probability R N  ( p )  of finding a percolating cluster at p in 
a lattice of size N .  There are some arguments to assert that dRN( p) /dp is approximated 
by a Gaussian function characterised by the mean p c ( N )  and the standard deviation 
A, ( p )  (Stauffer 1985, Efros 1986). We have proposed in the preceding letter (Sakamoto 
et a1 1989) a new method to estimate the percolation threshold pc from the extrapolation 
of pc(  N) to infinity. The numerical calculation of this letter is based upon the reliable 
values of p c  obtained through our method. On the HITAC M682H (a scalar processor), 
one MC run of size N = 100 000 bonds takes 0.5 second and the CPU time is nearly 
proportional to N in our method. 

In the evaluation of critical exponents for percolation, we make use of the cluster- 
number analysis due to Stauffer. In what follows, we give the definitions of critical 
exponents and our numerical results (Yonezawa et a1 1988, 1989). 

( i )  Exponent v is related to the critical behaviour of the correlation length 6 in 
the form [ a  ) p  -pel-". In a finite system of size N = L2, the correlation length 6 
becomes of the order L. Then, it follows that 

Ipc(N) -Pcl a L-””. ( 1 )  

A N  a L-”” (2)  

The standard deviation A, of dR,(p)/dp also depends on L as 

so that the exponent is calculated from the slope of the plot of log A N  against log L. 
In figure 1 ,  the log-log plots of (2) are presented for bond percolation in the above- 
mentioned five lattices. The values of v thus estimated are listed in the first column 
of table 1 in relationt to the theoretically predicted value v0 = ;. For the bond problem, 
the deviation of v from yo is 2% at most, while for the site problem the largest deviation 
is 6%. When we remember the ways in which v is estimated, we can say that these 
deviations are small enough and we conclude that the exponent Y for either bond or 
site percolation of any lattice takes the theoretically proposed value (den Nijs 1979, 
Nienhuis et a1 1980, Pearson 1980, Blote et a1 1981). 

( i i )  The fractal dimension D of a percolating cluster at p = p c  is defined by 

SpercELD (3 )  
where sperc is the size of the percolating cluster at p = p c .  Therefore, D is calculated 
from the slope of the plot of log sperc against log L as shown in figure 2. The values 
of D thus obtained are presented in the second column of table 1 in relation to the 
theoretically predicted value Do = g.  The deviation from Do is at most 2% for bond 
percolation and 3% for site percolation, which undoubtedly shows that the fractal 
dimension D is a dimensional invariant. 

(ii) Exponent 7 is related to the number q ( p C )  of s-clusters at p = p c  by 

4 ( P c )  a S - T  (4) 
from which it is obvious that the slope of the plot of log n , ( p c )  against log s gives 
( - T ) .  This plot for bond percolation in Penrose tiling is illustrated in figure 3. The 
straight line in the figure is drawn to fit those data points that give the maximum slope. 
For small s, the data points are lower than the straight line since the simple power 
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Figure 1. Log A,,, plotted against log L for bond percolation where A N  is the standard of 
d R N (  p)/dp. Plots are given for the square (U), Penrose (O) ,  dual of Penrose (O),  KagomC 
(+) and dice ( x )  lattices. 

Table 1. Values of some critical exponents obtained from our simulations. 

Percolation 2-a 
2-a, type 
- Lattice V I %  DIDO 7/70 P I P 0  Y /  Yo 

square 1.01 1 .oo 0.96 0.95 0.95 0.92 
Kagomd 1.02 0.98 0.96 0.95 0.76 1.03 
dice 1.01 1.01 0.97 0.94 0.94 0.95 

1.01 0.98 0.97 0.94 0.79 1.03 
Bond 1 

Penrose 
dual of Penrose 0.98 1.02 0.96 0.95 0.90 1.04 

Site 

square 1.06 0.96 0.96 1 .oo 1.02 0.93 
Kagomd 1.01 0.99 0.96 0.99 0.78 0.95 
dice 1.01 1.02 0.95 1 .oo 1.09 0.88 
Penrose 1.01 1 .oo 0.94 1 .oo 1.09 1 .os i dual of Penrose 1.02 1.02 0.97 0.99 0.73 1.16 

VO Do 70 2 - %  P o  Yo 

(=3) (=") 48 (+y) (=2- ( - -  3)  (=B) c = %  
7heoretical prediction 1.333 1.896 2.055 2.667 0.139 2.389 



L708 

4.50 

4.25 

4.00 

t 

3.75 - 

3.50 - 

Letter to the Editor 

L 

100 200 300 400 

3.251 
2.00 2.25 2.50 

log, L 

- 2  

- 4  

d 
p -6 

m - 

- E  

-1c 

Figure 2. Log sperc plotted against log L at p = p c  for 
the bond problem. The value of sperc is determined 
by taking the average of the results obtained from 
500 MC simulations at p = p c .  Plots are given for the 
square (El), Penrose (O) ,  dual of Penrose (O), 400000 bonds at p = p c .  
Kagomi (+) and dice ( x )  lattices. 

Figure 3. Log n, plotted against log s for the bond 
problem in Penrose tiling. The value n, is determined 
by taking the average of the data from 100 MC 

simulations in a lattice composed of approximately 

laws of the scaling theory are valid only for large s. For very large s, the data points 
become higher than the straight line since the clusters of larger sizes are cut into several 
pieces by the existence of the boundaries. 

The values of T thus calculated are shown in the third column in table 1 in relation 
to the theoretically predicted value r0. The deviation from 70 is at most 2% for bond 
percolation and 4% for site percolation. Here again, agreement is remarkable and T 

is a dimensional invariant. 
(iv) Exponents a, p and y are respectively related to the total number MO of 

clusters, the percolation strength P and the mean size S of finite clusters as follows: 

SE IP - Pc1 - y .  (7)  
When p = p c ( N ) ,  we can use (1) to eliminate the ( p - p , )  terms in ( 5 ) - ( 7 )  so that 
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Here again, the log-log plots of these three equations give exponents (2 - a), p and 
y when v is known. 

On assuming that v is i, the values of these exponents are calculated as shown in 
the last three columns in table 1. As for ( 2 - a ) ,  the deviation from the theoretically 
proposed value is at most 6% far bond percolation and 1% for site percolation. The 
percolation strength P is the probability that a bond or site belongs to a percolating 
cluster. Then we have P = sperc/ L2 = L so that p = 4 2 -  D) .  Since the fractal 
dimension D is slightly below the physical dimension d = 2 ,  the accuracy of p is 
expected to be lower than that of D. Exponent y suffers from a similar situation. On 
noting this point, agreement with the corresponding theoretical values is reasonable 
both for p and y, thus indicating that they are also dimensional invariants. 

From the analysis presented in the above, we conclude that the scaling hypothesis 
is valid and ‘universality’ is fulfilled irrespective of the class of the problem (bond or 
site percolation), irrespective of the type of lattice (periodic or non-periodic), and 
irrespective of the kind of coordination therein (single-valued or multi-valued). 

( D - 2 )  
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